RS-232 Communications

Why Serial Communications?

Serial communication is the most simplistic form of communication between two devices.

So What is RS-232?

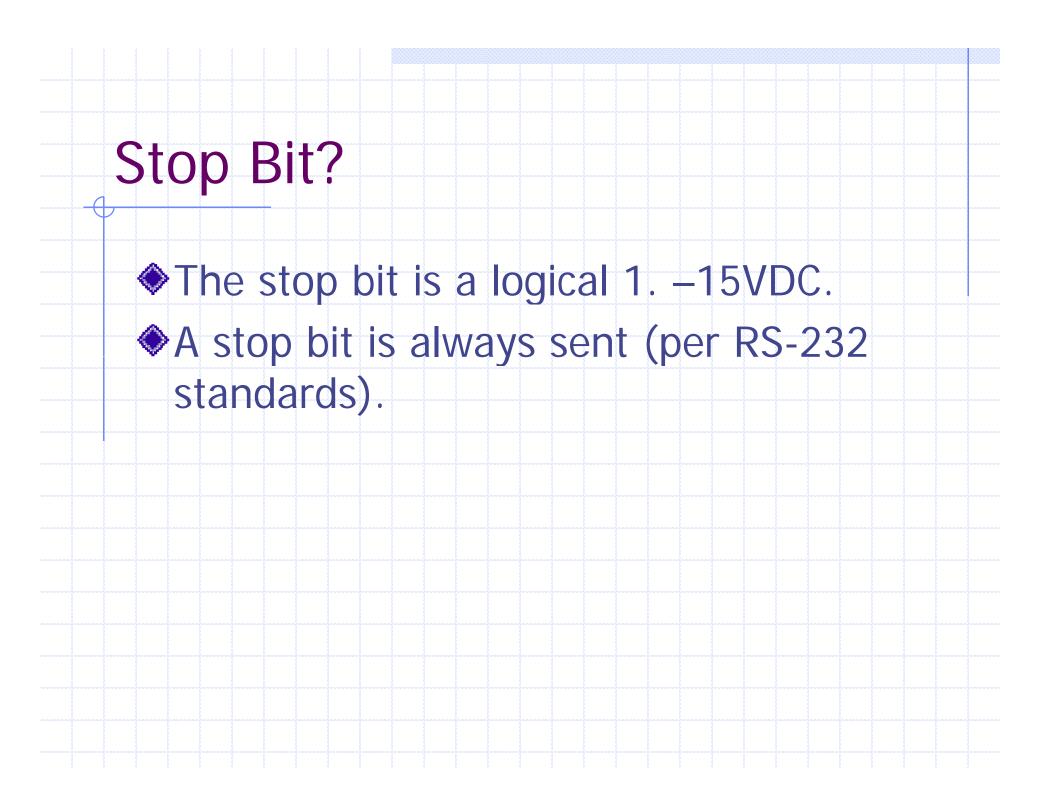
- RS-232 is a standard by which two serial devices communicate:
 - The connection must be no longer than 50 feet.
 - Transmission voltages are -15V and +15V.
 - It is designed around transmission of characters (of 7 bits of length).

RS-232 (cont.)

- One important aspect of RS-232 is that it is an asynchronous form of communication.
- Asynchronous communication is important because it is efficient; if no data needs to be sent, the connection is "idle." No additional CPU overhead is required for an idle serial line.

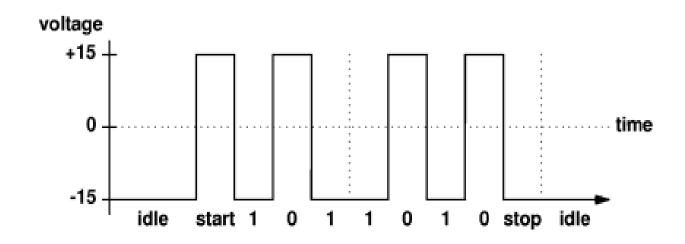
- ♦ Logical 1 is -15VDC.
- ◆Logical 0 is +15VDC.
- When the connection is idle, the hardware ties the connection to logical
 1.

How Can You Transmit Data?

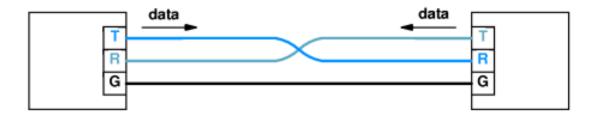

- RS-232 communication is dependent on a set timing speed at which both pieces of hardware communicate. In other words, the hardware knows how long a bit should be high or low.
- RS-232 also specifies the use of "start" and "stop" bits.

Sending One Character

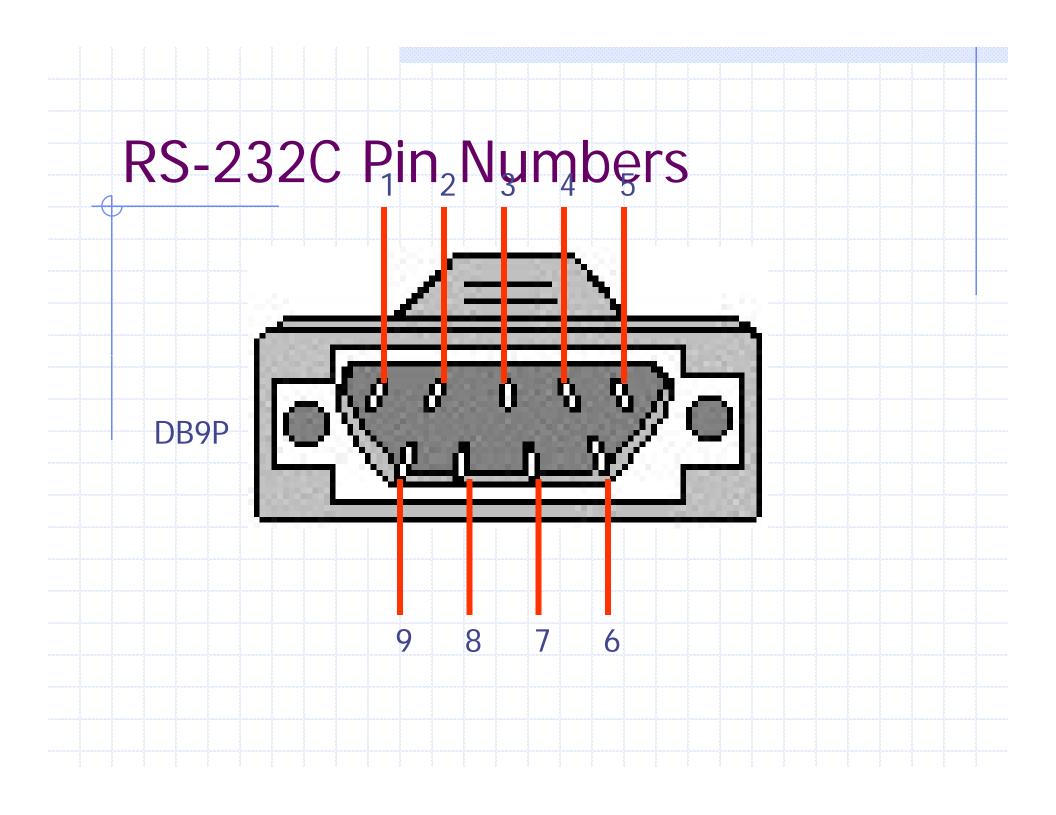
- Every time a character is sent, the same communication occurs:
- 1. Start bit sent.
- Seven data bits sent.
- 3. Stop bit sent.
- This communication is dependent on the fact that both devices are sampling the bits at the same rate! ...


What's the Start Bit?

- The start bit is a logical 0 sent on the line to tell the other device to start sampling.
- Remember, the logical 0 is +15VDC.


- We've mentioned that both devices must have the same speeds to talk, but they must also know to handle problems.
- The transmission rate of serial devices is called *baud*. It is the number of changes in the signal per second.

A Sample Transmission


Full Duplex Transmission

Full duplex transmission (FDX) occurs when data is transmitted (or can be transmitted) simultaneously by both devices. Special wiring is needed for FDX.

Wiring RS-232

- The RS-232 specification denotes usage of a 25 pin cable, where each pin has a specific usage.
- However, most devices never need to use all of the pins, so the cabling requirements for specific devices may vary.
- Many common serial devices (modems for example), use a 9 pin serial connection.

RS-232C Pins, Signals, Directions

R Special R R R R R R R	Pi	n				
A A A A A A A A A A A A A A A A A A A	DB25	DB9	Si	gnal Name	Direction	
A K K K K K K K K K K K K K K K K K K K	1		CD	Chassis Ground	-	
SECOND	2	2	TD	Transmit Data	DTE → DCE	
K K K K K K K K K K K K K K K K K K K	3	3	RD	Receive Data	DTE ← DCE	
X X X X X X X	4	7	RTS	Request To Send	DTE → DCE	
K K K K K K K K K K K K K K K K K K K	5	8	CTS	Clear To Send	DTE ← DCE	
K K K K K K K K K K K K K K K K K K K	6	6	DSR	Data Set Ready	DTE ← DCE	
8 8 8 8 8 8 8 8 8 8 8	7	5	SG	Signal Ground	-	
X X X X X X X X X	8	1	DCD	Data Carrier Detect	DTE ← DCE	
**************************************	20	4	DTR	Data Terminal Ready	DTE → DCE	
8 8 8 8 8 8 8 8 8 8 8	22	9	RI	Ring Indicator	DTE ← DCE	

RS-232C Connectors

The original standard specified a 25-pin connector

Today, a 9-pin connector is more commo DB9P

♦E.g.,

RS-232 DB25 Pin Out

	Function	Abbreviation		
Pin #1	Chassis/Frame Ground	GND		
Pin #2	Transmitted Data	TD		
Pin #3	Receive Data	RD		
Pin #4	Request To Send	RTS		
Pin #5	Clear To Send	CTS	13	
Pin #6	Data Set Ready	DSR	-	
Pin #7	Signal Ground	$\frac{1}{10000000000000000000000000000000000$		
Pin #8	Data Carrier Detect	DCD or CD	(00000000000000)	
in #9	Transmit + (Current Loop)	TD+	14 25	
n #11	Transmit - (Current Loop)	TD-		
in #18	Receive + (Current Loop)	RD+		
in #20	Data Terminal Ready	DTR		
Pin #22	Ring Indicator	RI		
Pin #25	Receive - (Current Loop)	RD-		

RS-232 DB9 Pin Out

DB-9M	Function	Abbreviation		
Pin #1	Data Carrier Detect	СП		
Pin #2	Receive Data	RD or RX or RXD	1 5	
Pin #3	Transmitted Data	TD or TX or TXD	[00000]	
Pin #4	Data Terminal Ready	DTR	\000000/	
Pin #5	Signal Ground	GND	70000	
Pin #6	Data Set Ready	DSR	6 9	
Pin #7	Request To Send	RTS		
Pin #8	Clear To Send	CTS		
Pin #9	Ring Indicator	RI		

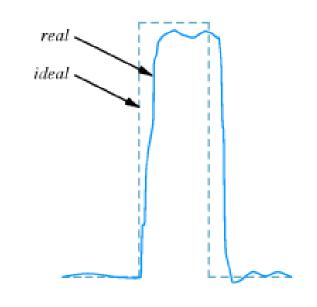
Connector Types

- The two different connectors are associated with two major types of hardware
- The Computer Terminal Equipment (CTE) and the Data Terminal Equipment (DTE).

Connector Types (cont.)

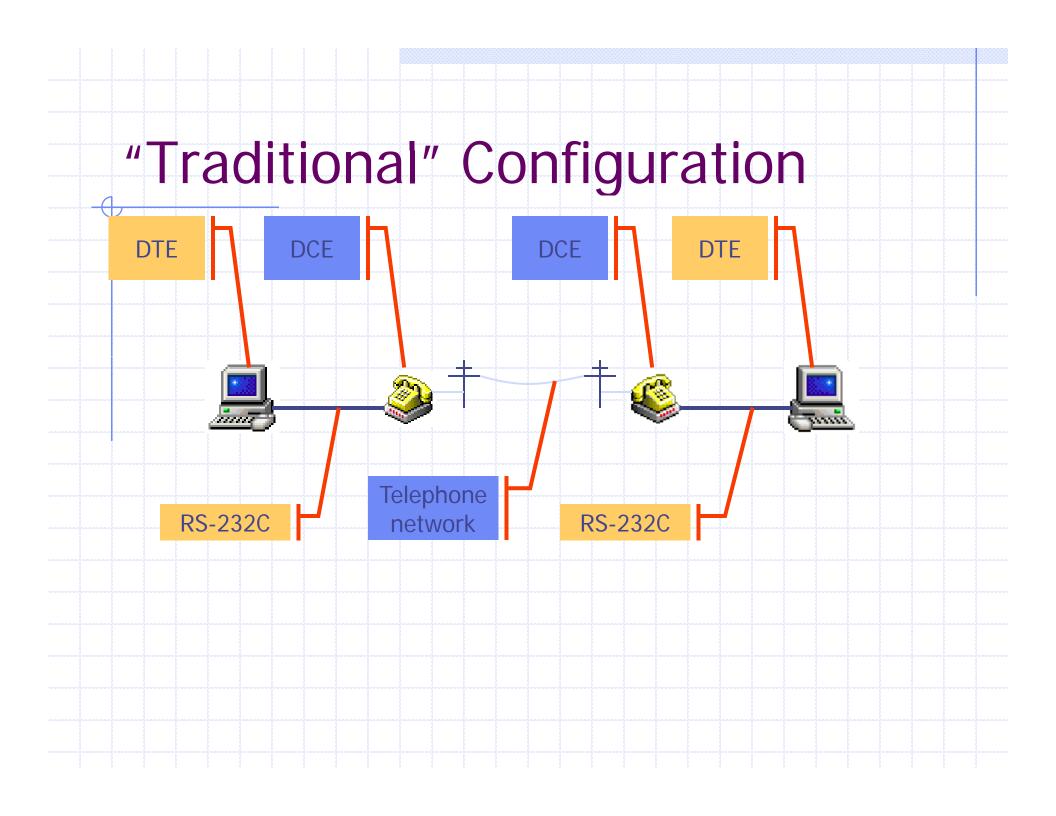
- For ease-of-use, a computer will transmit on pin 2 and receive on pin 3 (the CTE).
- ♦ Vice versa: a modem will transmit on pin 3, and receive on pin 2 (for the DTE).

Speed Limitations


- For people familiar with modem communications, there is a speed limitation associated with the transmission.
- ♦ 56k (56 kilobit) analog modems are pretty much the fastest analog modems that consumers are going to see. This limitation is due to telephone systems, not the computer systems.

Speed Limitations (cont.)

- However, serial communications between devices also has its own speed barrier.
- RS-232 was designed with the understanding that the analog world is far from perfect.
- Digital is fast, analog is slow. RS-232 is analog, therefore is it slow (in computing terms).


Why Is It Slow?

- ◆ ∆t exists. The change is not instantaneous.
- Sampling does not occur immediately, so it must wait Δt+t₀
- Cable length increases delay.
- Etc.

Noise

- Signal noise is bad. It is caused by a variety of sources, all of which lead to lower speeds and less reliable transmission.
- Shannon's Theorem shows that the maximum transmission rate of a voice call (analog) is ~30,000 bps (30kbps).

